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EXTENDING ISOMETRIC EMBEDDINGS

H. JACOBOWITZ

Introduction

Let H be a submanifold of a Riemannian manifold U. Assume f: H — E¥
is an isometric embedding into some Euclidean space. When can f be extended
to an isometric embedding of U into the same Euclidean space? In this paper
the author considers the local problem of finding conditions on f and H at a
point p € H, which guarantee the existence of such an extension of f to an
open neighborhood in U containing p. When everything is real analytic, these
conditions are implicit in the proofs of the Cartan-Janet theorem. However,
by focusing on this extension problem we obtain a proof which appears to be
simpler and better motivated than those in the literature. The author’s main
aim is to obtain such extension results even in the nonanalytic case. The ap-
proach is basically that of Nash [11]. One inverts a linearized operator and
tries to construct the solutions of a nonlinear problem. The present work is
based on the author’s version [7] of Nash’s paper.

To see the geometry involved consider a two-dimensional Riemannian mani-
fold U and the isometric embedding of a curve H on the manifold into three
dimensional Euclidean space. In general such an isometric embedding cannot
be extended. This is clear, for instance, if H is not a geodesic but its image is.
More generally compare the geodesic curvature «, of H at p with the cur-
vature of the space curve which is its image. Let e be the curvature vector at
f(p). If an extension exists, then there must exist a unit vector n orthogonal
to the image of H at p with £, = e-nr. Conversely, if for some unit vector n at
f(p) one has [k,| < e-n then, at least with everything analytic, an isometric
extension exists (Darboux [3, p. 274]). We shall show that for higher dimen-
sional problems the analogous necessary curvature condition is also almost
sufficient.

This paper was motivated by two questions. The first was to see how the
geometric conditions necessary for the existence of an extension enter into the
possibility of solving the initial value problem for a certain system of partial
differential equations. This was not clear to the author in the proofs of either
Cartan or Janet. The second was to see what modifications of the implicit
function theorem of [7] were necessary in order to handle initial value theo-
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rems. Indeed this paper, with just a little rewriting and generalization, could
have been entitled “An implicit function theorem for initial value problems”.

We need to introduce some notation and recall some definitions. The linear
span of a set of vectors {v, ---,v;}}is denoted  by:ls.{v,,---,vz}. Let
@: M™ — E¥ be an embedding of a manifold into Euclidean space. In a neigh-
borhood of some point p introduce local coordinates x,, - - -, x,. The tangent
space to the image of M™ in E¥ at p is denoted by T,(@(M)). Thus T,(&(M))
= Ls. {@,,, - --, P, }. The osculating space at p is defined by 0,(DP(M)) =
Ls. {@zy, 3@y Doy -+ > Pnrr + + +» Pz}~ Both T and O are independent
of the choice of coordinates. The map ¢: M — E¥ is an immersion if dim
T,(@(M)) = n, and is nondegenerate if in addition dim @,(P(M)) = L n(n 4 3);
in particular N must be at least as large as this number. This is equivalent to
the fact that the set of vectors occurring in the definition of @,(@(M)) is line-
arly independent. If @ is an immersion at p, then for some neighborhood of
p, @ is injective, i.e., is an embedding. Further, assuming @ is an immersion,
the usual metric on E¥ induces via @ a Riemannian metric on M, to be de-
noted by F(@). Thus F is a functional from immersions to metrics. We use
the term general metric for a symmetric bilinrear form which need be neither
nondegenerate nor positive semi-definite. In local coordinates, (F(D));; =
20(09 [9x,)(89? [0x ;). Given two maps u and v of M into E¥ we may con-
sider the Frechet derivative dF(u)v of F at u actingon v. This derivative of
F at u takes maps into general metrics: (dF()v);; = XY, {(6u*/ox;)(0v*/dx;)
-+ (@w/3x,;)(@v*[dx,)}. If H is a submanifold of M, then everyone knows what
the restriction of v to H is. We shall denote this by v|;. But for a metric g,
by g|z we do not mean the restriction of each component of g to H but
rather the metric on H induced by the inclusion of H into M. If we choose
local coordinates x,, ---,x, such that H = {x|{x, = 0}, then (gl =
8:ij(x, »++,x,.,,0), 1 <i<j<n—1. Throughout this paper we use the
indices i and j only in this range.

We shall often use the term isometry as an abbreviation for an isometric
embedding ¢: M — E¥. This is not the usual usage. The problem of finding
an isometric extension is the following: Given a manifold U with Riemannian
metric g and a submanifold H and a map f: H — E¥ with F(f) = gy, find a
map u: U — E¥ with F(u) = g and u|; = f. This is an initial value problem
for a nonlinear partial differential equation.

We solve this problem in the real analytic category by an application of the
Cauchy-Kowalewski theorem. For the C* category we shall first try to solve
the linearized initial value problem. Given a map u, can we find a solution v
to dF(u)v = 4g such that v|, = 0? Wemust require Agj,; = 0. Here dg is
used as symbol for a general metric. The notation anticipates our application.
Note that we want to conclude that all the components of v vanish on H, al-
though we do not assume that g;, is zero on H. For this, Nash’s method of
inverting the linearized operator does not suffice, and so we seek to modify it.
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After doing this we attack the C* problem by first approximating it by a com-
plex analytic one. This formalism involves the complexification of a manifold.
If M is a real analytic manifold of real dimension #, then there exists a complex
analytic manifold M° of complex dimension » such that M may be considered
a real submanifold of M°. For U in R™ we take as its complexification any open
set in C*, which contains U. A(r) denotes the set of functions (or maps, or
metrics) analytic on {z € C™|distance (Re z, U) < r, |Im z| < r}. For v € A(r),
[¥],,x is the supremum of v and its partial derivatives up to order k over the
above subset of C”. Note the Cauchy estimate, |v|, , < Kr~*{v),, . Use |v],
in place of |v|,,. We denote the ball in C* with radius r and center at the
origin by B(r), and use B(r) for the analogous ball in R™.

The extension of analytic isometric embeddings is studied in § 1. In § 2, the
Cartan-Janet Theorem is proved. § 3 provides the solution to the linearized
problem; this is used in § 4 to extend a restricted class of isometric embed-
dings. Then in the last section the results of § 1 and § 4 are combined to show
that all appropriate isometric embeddings can be extended. These results are
stated for codimension one submanifolds; similar results hold for arbitrary
codimension. This section also includes a deformation result.

1. Real apalytic extensions

Let H be an (rn — 1)-dimensional submanifold of the n-dimensional Rie-
mannian manifold U, and f: H — E¥ be an isometry with respect 1o the metric
U induces on H. Fix a point p € H, and identify the tangent spaces T,H and
Trpf(H). Let L: T,H X T,H — R and L: T,H X T,H — B be the second
fundamental forms of H in U and E¥ respectively, where B is the normal space
to f(H) at f(p). If there exists-an isometry f: U — E¥ which extends f, then one
has (v, L(X, Y)» = L{X, Y for some unit vector v in the tangent space to E¥
at f(p) and for all X and Y in T, H. Indeed v = fop, where p e T, U, ¢ | T, H,
l#ll = 1, and g has the appropriate orientation. In this way L necessarily domi-
nates L. We want to study to what extent this domination is sufficient for the
existence of such an extension.

Definition. For fixed f and p we say L > L if there exists some v € T, E¥
with

D <1,

2) v orthogonal to T,H, and

3) &, LX,Y)) =L(X,Y)forall X and Y in T,H.

It is enough to require in 3) that <{», L(X,, X;)> = L(X,, X;) for some basis
Xy -y Xpoy of T,H. Take N > dn(n + 1). If L > L for f and p, and f
is nondegenerate, then the same is true for f/ and p’ with f near f in C*
and p’ close enough to p. Also there is a unique vector satisfying 2) and 3)
with smallest norm. This vector varies smoothly as a function of p. Both of
these follow since for f nondegenerate @,(f(H)) is maximal (i.e., of dimension
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3 n(n + 1) — 1). Further by adding to v a vector perpendicular to &,(f(H))
we can obtain a smoothly varying unit vector satisfying 2) and 3).

We note the following for use in § 2. Let H be geodesic in the sense of being
the image under exp,: T,U — U of an (n — 1)-dimensional linear subspace.
Then in the natural coordinates all the Christoffel symbols of the connection
vanish at p, and at this point L = 0. Thus for any isometry f: H — E¥ one
has L > L.

Recall that the existence of an extension only implied one could find a solu-
tion to 2) and 3) with ||| = 1. Substituting [|v|] < 1 for the strict inequality
we could have defined L > L. However L > L is clearly not sufficient for the
existence of an extension as the following example shows.

We compare the metric ds? = dr* + (@()r)* d#* on R* with the standard
metric ds® on E? correspondingto @ = 1. Let (1) = 1, @'(1) =0, ¢/(1) < 0.
Consider two points belonging to the unit circle and close together. Clearly the
distance between these two points in the first metric in strictly less than their
distance in the standard metric. The inclusion §' — EZ of the unit circle is iso-
metric, since ds;, = ds* on §!, and, by what we have just said, cannot be ex-
tended in a neighborhood of any point to an isometry.

The same is clearly true for this map thought of as a map of $* — E*. In
particular, set f(§) = (cos 4,sin4,0), andletx, = r, x, = 4. Thus [}, = —
To find v we need v-f,, = 0 and v-f,,, = — 1. We can find a solution with
lv][ = 1 (but none with (|v|| < 1). Thus L > L is not sufficient for the existence
of an extension.

We investigate what L > L means in terms of local coordinates. Introduce
coordinates x,, - - -, X,_;,¥ = X, on U such that H = {(y, x)|]y = 0} and the
metric satisfies g,; = 0, g,, = 1. In this paper always 1 <i<j<n— 1.
The vector fields Y, X, - - -, X, _, denote the tangent vectors to the appropriate
curves. One computes that the Christoffel symbol I'y; is equal to — ¥ g;; ...
Thus L;; = <Y, X; — X;> = — } 8;; ». From L > L we know there exists a
vector w(p') € T,.E¥ (which we henceforth identify with E¥) which is of unit
length, satisfies 2) and 3) and varies analytically as a function of p’. In terms
of the map f: H— EY we have v-fo ., = — $ 850, v-fz, =0and vy = 1.
We shall now see that for real anmalytic Riemannian manifolds the existence
of a solution to this algebraic system implies the existence of an isometric map
7: U — E¥ which extends f.

Theorem 1.1. Let U be a real analytic Riemannian manifold of dimension
n, H an analytic submanifold of codimension one with the induced metric, and
p a point of H. Assume there isamapf: H— E¥, N = { n(n + 1), which in
a neighborhood of p is analytic and isometric. Finally assume that at p,f is
nondegenerate and L > L. Then one can find an open neighborhood U of p
in U and a real analytic map F: U — E¥ such that f is an isometric embedding
and | agrees with f on H N U. Further the augmented osculating space of H
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With respect to  is maximal. If N > } n(n + 3), then f can be chosen to be
nondegenerate on U .

This augmented osculating space is the linear span of @,(f(H)) and Tp(f(U)).
Its maximality reflects our choice below of an initial vector f,(p) which does
not lie in @,(f(H)). The fact that f is nondegenerate if the dimension N is high
enough is crucial for our proofs of both the Cartan-Janet theorem and the C=
extension result.

Proof. 1In the local coordinates introduced above, the isometric embedding
equations become

(1) fxi‘fzj=gij ] fzi'fyz()’ fy'fy: 1 .
We consider f(0, x,, - - -, x,_,) as given and seek a solution f(y, x;, - - -, X, _;)
= f(0,x) + f,(x)y + f,(x)y* + - ... Equivalently we reduce (1) to a system

to which we may apply the Cauchy-Kowalewski theorem. It is easy to see that
a solution of (1) must also satisfy

(2) fy'f.zi:r:j = - %'(gij)y ) fy'f.z;i =0 fy'fy =1 )
(3) fyy‘fzi =0, fw'fy =0, fyy'fxizj = Tlf(gij)w + fyzi'fyrj .

We have already seen that the condition on the second fundamental forms
implies that f,(0, x) = v(x) satisfies (2) on H. Further »(x) is linearly indepen-
dent of O(H), i.e., the matrix whose rows are v, fz,, s fz,_1s faizr ** > Fzizp

3 fzn_rz._, is invertible. Thus we can apply the Cauchy-Kowalewski theorem
to system (3) with (0, x) the given map of H into E¥ and f,(0, x) equal to »(x).
This means applying the Cauchy-Kowalewski theorem to a possibly under-
determined system. We will comment on this later.

It is now straightforward to verify that the analytic function f(x, ¥) so ob-
tained also satisfies (1). We do the longest of the calculations: Assume we have
already shown f,.-f, = 0 and f,-f, = | wherever f(y, x) is defined and for all

i=1,.-.,n— 1. For some i and j, set u = x;, v = x;. On H we have f,-f,
= g;;» and want to obtain f,-f, = g;; everywhere. We know that on H,f
satisfies the initial condition f,-f,, = — % (g;;),. Differentiating f,-f, = 0 =
fo-f, gives that (f,-f,), = — 2f,,f, = (g:,), on H. If we can now show that
(fu-fo)yy = (8:7)yy everywhere, then clearly f,-f, = g;; everywhere. From f,-f,
= f@fy = 0 and fy'fy = 1 we derive fu'yyfv = — fuvyfy - fuyfvy - fuvfyy and
fuvsfy = — fuyfoy. Thus using (2) we obtain (f,-f.),, = (8:;),,» Which implies

that a solution to system (3) satisfying the above initial conditions is also a
solution to system (1), i.e., provides an extension of the isometric embedding
H — EY. Clearly for this extension we have a maximal augmented osculating
space of H in E¥. We want to show that for N > 4 n(n + 3) some nondegene-
rate extension can be found.

Let B(2,, - - -, 4;) be an r X s matrix, r < s, depending analytically on para-
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meters 2; and of maximal rank, and C(4,, - - -, 4;) be some right inverse also
varying analytically. Now consider an equation B(f,,, f;,z,)f,;, = g. Then any
solution to f,, = C(f,,, f,,.,)¢ also satisfies Bf,, = g; this is how the Cauchy-
Kowalewski theorem is applied to underdetermined systems. We want to modify
this so as to obtain nondegenerate isometries.

Given a set S = {v;, - - -, v} of vectors in EY, N > k, let u(v,, - -+, v;) be
some nonzero vector orthogonal to S. If each v, varies analytically, and Sisa
linearly independent set, then g can also be chosen analytic. If B is now a
matrix whose rows are given by the vectors f,,, f,, fz,.,,and C is again some
right inverse, while p = p(f;,, f;, fz.z,), then f,, = Cg + p also satisfies Bf,,
= g. Using this observation we can insure nondegeneracy. First take C to be
that right inverse whose range is the linear span of the rows of B. Next we use
the following lemma to help find an appropriate p.

Lemma. If L > L at the origin, and N > % n(n + 3), then there exists a
vector v(x) in E¥ analytic near the origin, for which f,(x,0) = w(x) satisfies
(2) and {»,v,,, f.., fz:z2,} is linearly independent at the origin.

For the proof find some v, such that (2) is satisfied, except |»,| < 1. Seek
X)) = u(x) + afx) + G x) + -+ + X, (x)) where each a,(x)
is either zero or orthogonal to @(H). Choose f(x) so |x(x)| = 1. It is not too
difficult to see that it is possible to pick the a’s so that {v, vz, fz,s fzpz} 1S
linearly independent at the origin.

Now consider p(v,, ---,v,) as above. In particular we will look at
&z Fziop Fys Fyzy) Where, because of the initial data f, = v and the above
lemma, we can take ¢ to be an analytic function of its arguments. The solution
to fyy = C(f2, fys f2,208 + (f2,s Ty fziz fy2)> With the initial data f(x,0) =
the given embedding of H and f,(x,0) = v, also satisfies Bf,, = g and so, as
we have seen, also satisfies (1), i.e., gives an isometric embedding. Note f,,
is linearly independent of {f,,,f,,fs.zfyz}> SO that dim O(HU)) = 3 n(n + 3)
and f is nondegenerate. This concludes the proof of Theorem 1.1.

This theorem is a local result. We can also ask when the isometry f: H — E¥
can be extended to a neighborhood of all of H. So let f be nondegenerate, and
suppose L > L everywhere on H. Note that once the initial condition f,(x, 0)
is given, the solution to system (3) given by the Cauchy-Kowalewski theorem
is unique and so is independent of the choice of coordinates x,, - - -, x,_;. Let
B be the line bundle on H determined by the direction orthogonal to O(f(H)),
and D be the normal line bundle of H in U. If B and D are isomorphic, then
the initial data can be globally prescribed. Hence, if H is also closed in U,
then the isometric embedding f can be extended to an isometric embedding of
an open neighborhood of H. Of course, B and D isomorphic is also necessary
for the existence of an extension for which H has everywhere an augmented
osculating space of maximum rank. A more complicated condition arises
when one requires that the extension be nondegenerate.

The main result of this paper is to show that even nonanalytic isometric
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embeddings can be extended, provided we replace N > i n(n + 1) by N >
in(n + 1) + n. Before doing this we detour to show how one may now prove
that any real analytic #-dimensional manifold has a local analytic isometric
embedding into E¥. We also discuss previous work on this real analytic prob-
lem.

2. The Cartan-Janet theorem and some generalizations

In this section we prove several well known results. Let us start with the
Cartan-Janet Theorem.

Theorem 2.1. Let U be an n-dimensional real analytic Riemannian mani-
fold, and p a point of U. Then there exist an open set U containing p and a
real analytic map of U into E¥, N = L n(n + 1), which is an isometric em-
bedding.

Letpe ' C H*C -.. C H*'C U be a sequence of analytic submanifolds,
dim H* = k, We seck analytic nondegenerate isometries of each H* (or rather
an open subset of H* containing p) into E¥, N = { n(n + 1). For H! this is
simple since the introduction of arc length is an analytic change of variables.
If H*-*is so embedded, and our curvature condition holds, then one may apply
Theorem 1.1 and obtain a similar embedding for H*. At the last step we obtain
an embedding of U which proves Theorem 2.1, or we can replace N by
Fn(n + 3) and obtain a variant of this theorem: Every such U has an analytic
nondegenerate isometric embedding into E¥,*N = & n(n + 3).

Before questioning whether the sequence of manifolds H* and their non-
degenerate embeddings can be found such that the curvature restriction is
valid, recall that this restriction is always fulfilled if the manifolds are geodesic
at p. This proves Theorem 2.1.

Let M and M be Riemannian manifolds, dim M = n, dim M = L n(n + 1).
Let H be a submanifold of codimension one in M, and #: H — M an isometry.
We wish to extend /4 to an isometry f: M — M. Again we assume everything
is real analytic and seek only local results. For local coordinates on M we wish
to solve

oo )=

where the first inner product is in M, and the second in M. Let H = {x|x, =0},
and take {3/0x,,8/dx;> =0, i # n. Also set X, = {,(3/3x;). A necessary
condition for an isometric extension to exist is that there exists W ¢ TM with
W,Wy=1,(W,X,>=0, and (W,V, X > =TI? along h(H) C M. We still
use 1 < i < j < n. Here F is the connection in M (subsequently also denoted
by ), and [} the Christoffel symbol in M. It is easy to verify that any solu-
tion to

G
0x;

<‘7Xan’Xi> =0 > <7XnX7Z7X7L> =0 s
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= = 1 a a
7. X, =_1 > Vo XV, X
s, X5 2 o \ax, %, + P, P €

subject to the initial conditions on H
<X7HVX > Fz] ’ <X7L7Xz> = 0 > <X7an> =1

also gives a solution to (1). Here R is the curvature form R(4,B}C = — 4 |—
B—~C+B~AC +4,B1C.

Using local coordinates and recalling that R is a tensor and hence does not
depend on the derivatives of f, we see that the Cauchy-Kowalewski theorem
can be applied provided {X;, X,, 7 »,X;} are linearly independent on the initial
surface H. So we say f is nondegenerate at p e H if the set {X,, 7y, X} C
T ;M is linearly independent, and we say L > L if there exists W e TM
with KW, W) < 1, (W, X,> =0, and <W,V,X,;> = L(X;,X,), L being the
second fundamental form of H in M.

Theorem. If f is nondegenerate, and L > L at p ¢ H, then the isometry
h: H— M can be extended to an analytic isometry in a neighborhood in M
of p.

As before, we note that if H is a geodesic submanifold of M at p, then any
isometry h: H — M can be extended, provided that 4 is nondegenerate. Also
note that if M is a submanifold of some M, geodesic at some point g, then for
any h: M — M with h(p) = q the osculating space of A(H) at g as a linear
subspace of T, is actually contained in 7,. With these two observations
one can prove the following generalization of the Cartan-Janet Theorem.

Theorem 2.2. Let M, and M, be arbitrary analytic Riemannian manifolds
of dimensions n and tn(n + 1) respectively. Then about each point in M,
there exists an open set which can be mapped isometrically into M, by a real
analytic map.

We now consider metrics which are indefinite but nondegenerate. This
means that if we diagonalize the metric at a point, we obtain positive and nega-
tive eigenvalues but no zero ones. Note however that we can obtain nonzero
tangent vectors of zero norm. Such directions are said to be isotropic. A metric
with n, positive and n, negative eigenvalues is said to be of type (n,, n,), and
the underlying manifold is denoted by M™*™ or M", n = n, + n,, when type
is not important. Let H"~*(=H">™) be a submanifold of U*, p a point of H,
and f: H*' - E¥, N = $ n(n 4+ 1), a nondegenerate isometry. Again every-
thing is real analytic, and we seek a real analytic isometric extension of f in a
neighborhood of p € U.

Note that for any set S of & — 1 linearly independent vectors in an indefinite
space E* there is a vector orthogonal to S (although it may also be an element
of 5). Further this vector is unique up to scalar multiplication. So upon fixing
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a direction, let #; denote the vector normal to H in U, and let ¢z denote the
vector normal to @(H) in E¥. Let ¢y = + 1 if there exists A such that ||, || =
+ 1, and g; = 0 otherwise, and the same for ¢z. We shall always assume
oy # 0, i.e., the direction orthogonal to H is nonisotropic. This allows us to
introduce local coordinates in the same way as before. Let v € O(f(H)) be that
unique element with f,,-v = 0, and f,,;,-v = L(X;, X)).

Theorem. The nondegenerate map f: H* — E¥ has an isometric extesion
under any of the following conditions

D vl < —1andeg > 0,

(i) ||o]|>1andez <0,

(i) — 1< |v| <1 andagsy > 0.

The proof is clear. The fact that the metric is indefinite play no role in
solving system (3) but only in satisfying the initial conditions (2). The inner
product u-v now has the form % _u v® — 3% .., u*v® where E¥ = E*¥-F,

Corollary. Suppose that H>™ — E™$ is a nondegenerate isometry (r + s =
3n + m)(n + m + 1) — 1), and that H*™ is geodesic in U»™** (or U*"™),
Then one can extend to an isometry U™+ — E75%1 (or U»*"™ — ET+V) with
maximum osculating space if and only if o, < 0 (or ¢; > 0).

Call E¥ compatible with H” if E¥ is of type (N,,N,), and H" is of type
(n,, n,) with N, > n,, N, > n,.

Lemma. H* has an isometric nondegenerate embedding into EY,N >
L n(n + 3), if and only if E¥ is compatible with H".

So if we apply the above results to some H*~! which is geodesic in U” and
whose orthogonal direction is nonisotropic we obtain the following result.

Theorem 2.3. U~ can be locally embedded in E¥,N = yn(n + 1), by a
real analytic isometry provided only E¥ is compatible with U™.

One can naturally also replace the Euclidean indefinite metric by any other
nondegenerate one.

Theorem 2.1 was first proved for two-dimensional manifolds in Euclidean
three-space by Weingarten [12]. Janet [9] in 1926 sketched a proof of the
general case; this was incomplete because he could not guarantee the existence
of the appropriate initial conditions. Burstein [1] in 1931 completed Janet’s
proof, and stated that the generalization to Theorem 2.2 presents no difficulty.
He showed that f: H*™' — E¥, N = { n(n + 1), could be extended whenever
f was nondegenerate and H” ' geodesic. The use of such geodesic hypersurfaces
obscured the curvature condition and its relation to the initial values. In the
meantime Cartan [2] published a proof of Theorem 2.2 using his theory of
exterior differential forms. In 1956 Leichtweiss [10] gave a new proof of
Theorem 2.2 in the spirit of Janet’s and Burstein’s work. Finally, Theorem
2.3 is due to Friedman [5], using another variation of Janet’s idea. This result
for indefinite metrics was known to Eisenhart [4, p.188].

We have also used this basic idea of reducing the isometric embedding equa-
tions to a system of Cauchy-Kowalewski type. The material in sections one and
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two differs from that of previous authors in that it focuses on the necessary
geometric conditions for extending a given embedding of some (not neces-
sarily geodesic) submanifold. This viewpoint seems to make the proofs sim-
pler and more natural.

One can also consider nonanalytic Riemannian manifolds.

Theorem. Let U™ be a Riemannian manifold of class C*,« > 2. Then each
point of U™ has an open neighborhood which admits an isometric embedding
of class C* into E¥,N = { n(n + 1) + n.

This follows from the arguments used by Nash [11] in his work on global
isometric embeddings. The C= case was proved by Greene [6], and the general
result can be easily proved using [7].

However these techniques are not immediately applicable to extension prob-
lems, i.e., to initial value problems. It is the aim of the present paper to show
what modifications are necessary, or rather sufficient. Of course once we solve
the extension problem for nonanalytic metrics, we can prove corresponding
version of the above theorem in the same way as we proved the Cartan-Janet
theorem, but we do not in this way get that the embedding is also of class C=.

3. The linearized equations

CGur goal is to generalize Theorem 1.1 to nonanalytic metrics and embed-
dings. The first step is to study the linearization dF(u)v = Ag defined in the
introduction. For N > { n(n + 1) the equations are underdetermined, and so
we may assume that certain additional conditions on ¥ are also valid. If N >
tn(n + 1) + n, and the map u: U — E¥ is nondegenerate, then, as Nash show-
ed [11, pp. 31-34], there exists one and only one solution v also satisfying v ¢
o(U) N (T(U))~+. We cannot use this construction since, for this inverse to the
linear operator, dF(u)v = 4g and 4dgly = 0 do not imply v = 0 on H. Thus
v does not solve the linearized initial value problem. So we modify Nash’s
solution. We pay for this modification by not retaining as good a bound on v.

Let u: U — E¥ be a given map. Again we use the indices 1 < i < j < n,
and introduce coordinates x,, ---.,x, such that g,, =1 and g,, =0, i.e.,
U, -u, =1 and u,, -u, = 0. We later also use the indices 1 < I < T < n.
Assume the submanifold H is given by {x|x, = O}. Set v = §/0x_, denote I.s.
{L(v, x)x €« TU} by S, where L(x,y) is the second fundamental form of U in
E¥ and set 0 = T(U) @ (O(U) N (S T(U)LY). If we make some canonical
choice of the coordinate x,, then this space @ is independent of the choice of
(the other) coordinates. So let the coordinate curve of x, always be the
unique geodesic orthogonal to H.

Let h: H— TU be any section,and 4g any general metric. The notation
g suggests our future application.

Lemma. Assume u is nondegenerate, and N > tn(n + 3). If Agl,; =
dF(u)hiy, then the system of differential equations dF(u)v = Ag, together with
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the conditions v = h on H and v ¢ O everywhere, have a unique solution.
Proof. Let v e 0, and consider the unique decomposition v = a + z, a ¢
(), ze ONT(U)*. Seta = a’u,,, (summation convention with i or j summed
from 1 to n — 1 and I or J from 1 to »; but if an index appears on both sides
of an equation, then no summation is intended).
The eqations dF(u)v = Ag become

2a2ﬂ = Agnn > gijaé,., + a:i = Agnz ;
— 2y, 2 = Agiy; — (dF(W)a);; -

We have used the obvious equalities:

uzn.uxll'n = 0 ’ uxn.z-rl = 0 = uxllzzn >

Uy, "Uzpzs + Ug, Uz, = 0 ’ Uy, Zgy, = — Uprzp," X«

There is a unique solution to the first » equations which agrees with &
on H. This solution satisfies the estimates |a*| < C{/dg| + |4[} and |a*| <
C{/4g|, + |h};}. The norm without a subscript is the maximum norm taken over
some domain, and the other is the maximum of this norm, for the function
and all of its first derivatives, taken over the same domain. We wish to solve
the remaining { n(n — 1) equations for z and to have z = 0 on H.

Lemma. If u is nondegenerate, then at each point of U the linear algebraic
system u. .-z = G;; has a unique solution for any right hand side. This solu-
tion varies analytically if u and G are analytic.

In our application, —2G;; = 4g;; — (dF(wa);; where, on H, a = h and
dF(u)h = 4g;;. So indeed z = 0 on H.

To prove the lemma we note that the orthogonal projection of ¢ N T(U)*
into Ls.{u,,} is always injective, while dim @(U) = {n(n + 3) implies dim
0 N T(U): = {n(n — 1), so that this map is surjective and l.s.{u,,,} is of
maximal dimension. Thus one has a unique solution of u,,,-z = G;; under
the side condition z ¢ ¢ N T(U)* = @(U) N S+ N T(U)L.

We now introduce the complexification of U and the associated norms as
outlined in the introduction. It is easy to see that our previous results carry
over.

Theorem. Let u’: U — C¥ be analytic and nondegenerate in some com-
plex ball B(r,). Given Ag also analytic on B(r,) with 4g = 0 on H, one can
find v° ¢ A(ry) satisfying dF(u)v° = Ag, v° = 0 on H. Further there are local
coordinates depending on u® and a constant K also depending on u® such that
for every r with 0 < r < r, one has |v°), < K|4g|, .,

The estimate on [v°], = |a + z|, comes from the complex form of our pre-
vious estimate for a and the observation that z = M(dg — dF(u®)a) where M
is a matrix depending only on {u,,,}.

Let u € A(ry). For |u — ], , small, u is also nondegenerate, and so we can
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find a corresponding ¥. We can even assume that the same K suffices. So we
get [v], < K|dg|,,, with respect to coordinates whose choice depends on u.
Does this inequality also hold for the original coordinates depending on u°?

Lemma. There exists some ¢ > 0 such that [u® — ul, , < ¢ implies |v|, <
K|A4g|.,, even in the original coordinates.

To prove this one just has to study how the special coordinates we have
introduced depend on the choice of metric. This is a straightforward applica-
tion of the fundamental theorem of ordinary differential equations on the local
existence of solutions and their dependence on parameters.

So we start with #° and fix a choice of coordinates. We have proved the
following.

Theorem 3.1. Let u°: U — EY be a nondegenerate analytic embedding and
H an analytic submanifold of U. Then there exist positive numbers e, r,, K such
that if u e A(r) and 4g € A(r) for some r < r, with {u — |, , < ¢z and 4g|;
= 0, then there exists v e A(r) satisfying dF(w)v = Adg, v =0 on H, and
0}, < K| 48],

We use the following notation. Let dF~*(u) denote the operator defined by
dFu)dg = v for that v given by Theorem 3.1. This is a right inverse for
dF(u) and |dF~'(u)dgl, < K|4gl, .. The operator dF~"(u) is itself Frechet dif-
ferentiable; we use this at the end of § 5 in connection with deformation
results.

4. Extension of certain isometric embeddings

In this section we show that even nonanalytic isometric embeddings f: H —
E¥ can be extended as long as they are close to analytic nondegenerate em-
beddings of U. Without loss of generality take in place of U the ball B(R) in
R™ with radius R and center at the origin. Assume u: U—E¥, N > L nn + 3),
is an analytic nondegenerate map, and f € C%. Let H be an analytic submani-
fold of U of codimension one, and g be a metric on U of class C¢~! with gl
= F(f). We need that ¢ > 9 and is not equal to an integer. Let |||}, denote
the C? norm in either U or H depending on the domain of the function ».

Theorem 4.1. There exists a constant C depending on the values of u in
some complex ball of radius r, with the following property: If for some r < r,
one has ||f — ulzll, < Cr® and ||g — F(u)|,_, < Cr®, where the norms are over
H N B(r) and B(r), then there exists a map @: BQr) — EY of class C~* with
F(@) = gand iy = .

Remarks. By iy = f we of course mean H replaced by H N E(%— r). One
can even find a # with the additional property that # e C%~° whenever, for
some ¢ > g,f e C? and g e C¥~'; here no additional estimates in C% are
necessary. Thus the solution is roughly as smooth as the data. In particular,
if f and g are of class C~ and satisfy the hypotheses of the above theorem,
then we can find a solution @ ¢ C~.
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Note we have not explicitly assumed our previous sufficient condition L > L
or even the necessary condition Z > L. However, from the fact that u: U —
E¥ is nondegenerate it follows that u|; is also nondegenerate and satisties
L > L, so that L > L holds for all f near u/j.

Now we introduce new notation and modify old. For fixed r let 9* =
fze C*|Rez| < r(F + 27°9,|1,2] < 27%; 9~ = {ze R*||z| < }r}. Let |f)
now denote the the sup norm in £¢. Similarly define the norm on derivatives
{fl;,x- Let {*} be a sequence converging pointwise to f on Z*, f* analytic on &,
with the property that for each [ with f € C/(2>) there is a constant C, such
that for all v

If =1 < G2 — o]

This last norm is in C(B(r)). We denote such a convergence by f* = f. If
f* =3 f with respect to the fixed r, then we have the same type of convergence
for all smaller values of r too. See for instance [7] for a discussion of this con-
vergence and a similar application. In particular, there are numbers C, depend-
ing only on /, #, and N such that given f and f° one can always find such a
sequence {f}.

Basically one proves Theorem 4.1 as follows. First find some v ¢ C4«B(r)
for which v|; = f and ||v — u||, is small. Now find », = v and g, 3 g with
8:lz = F(uy) |y (take u, to be w). Consider the functional F(v, g, w) = F(v + w)
— g. % is an analytic function of its arguments, and F(u, F(u),0) = 0. By
Theorem 2’ of [6] we can, given v and g, solve F(v, g, w) = 0 for w provided
lv — ull, and ||g — F(u)||,., are small. We shall reprove this result in our
present special case because, first, we must show w = 0 on A and must obtain
precisely the statement of Theorem 4.1 and, second, the proof of Theorem 2/
was omitted in [7]. But since the techniques have already appeared, we omit
some details.

So we first construct the sequences {&;} and {g;}. Assume |[f — uly], <.
Set v(x,y) = u(x,y) — u(x,0) + f(x). So v|y = f(x) and || v — u}l, < e. Take
any sequence u; = v, u, = u. We now need a simple lemma.

Lemma. Consider a function h(t, x),t € R%, x ¢ R® for some integers a and
b. If h'{(x) 3 k(0, x), then there exists a sequence {h'(t, x)} with h(t,x) =
h(z, x) and R 0, x) = h(x).

Take any sequence {4}, ' = Ai(t,x), converging in the manner defined
previously. It is obvious that {4} defined by #° = A*(¢, x) = Ai(t, x) — 10, x)
-+ h*(x) has the desired properties. Applying this lemma to the relevant com-
ponents of g and using gl = F(f) = F(¥)|; we find a sequence {g;}, where
g; =g and g;ly = F(u,)|x, and also we take g, = F(u).

Consider the iteration

Wo = O H wn = wn—l - dF(un—L + wn—l)_l{F(un—l + w‘lz—l) - 0072—-1} i
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If w, converges to some w, then clearly F(u, + w,) converges to g, and so
F(v + w) = g. Further if w,_,{; = O, then also w,|; = 0 since F(u,_,) =
2._, as metrics restricted to H.

To begin the convergence proof let us recall that |u;, — u,_,; <
C27" v — ull, and |8; — &:yly < Cqy2797V|[F(uy) — 8llg—,- By the Cauchy
integral formula one has [s(2)};. < C2%r~*is(z2)|;_,. Now let |dh] =
|A; — h;_,|; for any sequence {#*}. Assume as an inductive hypothesis | dw;| <
A2, i=1,--.,n — 1, for some p and A to be chosen below (here n is not
related to the dimension of U). For i = 1 we have | 4w, | = |dF ()" {F(1) — g} ;-
< Kigy — &ilyr < K(2/1)*|gy — &:], < 2277 if |F(u) — g, < Kr*A. K, and later
K, and K,, denote various constants which depend only on the values of « in
the complex ball of radius . Note we have used the results of § 3. Also, by
Theorem 3.1, there is some e such that if [u, — (u,_; + W,_D],., < &, then
dFYu,_, + w,_,) can be defined and satisfies an estimate which in our pre-
sent case vields [dw, | < K|F(u,_; + Wy 1) — Znciln.e-

Note that

n—~1
luo - (un—l + wn—l) l'rz.4 S IZ(qu - ui—-1|i+1,4 + Iwz - wi—1|i+1,4) ’
and using Cauchy’s estimate, our inductive estimate, and the fact that v, 3 »
we obtain v, — (u,_, + Wy_ ), < e provided p > 4,9 > 4,y — v, <
Ar'Cy(%e), and 2 < LAer* where A depends only on min (g — 4,p — 4).
Hence we think of 4 as an absolute constant. .

We now need to estimate |4w,| using Theorem 3.1 to again bound our
inverse operator. We have F(u,_, + w,_,) = Flu,_, + w,_,) + dF(u,_, +
Wo_Jdu, _, + Aw,_ ) + F(du,_, + dw,_,), and since dF(u,_, + w,_,)dw,_,
= — F(u,_, + w,_,) + 8,_, one gets dw, = dF ' u,_, + w,_ {dF(u,_, +
Wo_Ddu,_, + F(du,_, + 4w,_)) + dg,_;}. So

|dw, | < K{ldF(un-z + wn—z)dun—lln,z
+ [F(du,_, + 4w, _,) fn,e + |48y _yln,2}
< KK | duy_|n; + K(dup_ylps + [AWn 1 1n,2)* + K|y _1lnye »

and using the Cauchy estimate together with the inductive hypothesis one
obtains

| Awe | < Kfluy — w]r=27 + 227®9mr 0 4 g, — g|ria}27e

provided ¢ — 3 > p > 6 and Ju, — | < i. Now take 2 = + 7K, |luy — v,
17°K57, and || g, — gllo—1 < % 7°K;!. We obtain (4w, | < 12-?", and by the in-
duction this estimate is now valid for all ». Recall |4w,| is an abbreviation
for {[w, — w,_1|,2-~. There thus is a function w ¢ C? with domain 2~ such that
w, = w. The convergence is now defined with respect to § r rather than r.
Also for w to belong to C? one must assume p is-not an integer. Taking p =
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q — 3 proves the Theorem. It only remains to prove the remark after Theorem
4.1, that is, to show we can even find one particular solution # which is smooth
as the data allow. To do this we would have to modify our iteration. Instead of
using each g, in only one step of the iteration, solve the entire problem for g
replaced by (the analytic) g,. Next consider the perturbation problem of going
from the now known solution for g, to the desired solution for g,.,. This
allows one to keep better control on the rate of convergence.

5. Main results

We now come to our main result: every appropriate isometric embedding
can be extended. _

Theorem 5.1. Let U be a Riemannian manifold, H be a codimension one
submanifold, f: H— E¥, N > 1 n(n + 3), be a nondegerate isometric embed-
ding, and p be a point of H at which L > L. If U, H, and f are of class C=,
then there exists a C* isometric embedding f of some open set containing p with
f |H = f.

The following finite differentiability result also is valid.

Theorem 5.2. Let g be a metric on U, H a codimension one submanifold,
f: H— E¥ a nondegerate isometric embedding, and p a point at which L > L.
If H and f are of class C*, and g of class C*~%, where k > 17 and is not an
integer, then there exists an isometric embedding of a neighborhood of p, which
is of class C** and extends f.

We prove this second theorem, and refer to [7] for the modifications neces-
sary to get the C result of Theorem 5.1. Also see the remarks at the end of
the last section. Because of the local nature of this theorem we can think of
U as an open ball B(r) in R” and centered at the origin. Since H is of class C¥,
by means of a coordinate chart of class C* we can write H = {x = (x,, - - -,
x,)|x, = O}. In these new coordinates, f and g remain of class C* and C*-',
and H is analytic. We arrange that the origin is the point p. With our usual
convention on indices we have g = g;; and gly(x, -+ -, %, ) = gi;(xy, - -+,
X,_1,0). We shall now find an analytic «*: U/ — E¥ such that F(&*) and u°|;
approximate g and f respectively, and then try to apply Theorem 4.1.

Let {|v|l,,, denote the norm in either C?(B(r)) or C/(B(r) N H). By termin-
ating the Taylor expansion of f about the origin after s terms we obtain an
analytic map f;: H — E¥ with{[f — f,|,- < Cr*'~? for allreal p,0 < p < s.
Similarly, we approximate g;; by (gz,);-1, and obtain |ig7; — (€7/)s-1llp-1.r <
Crs71-2, Consider the metric ¢ given by g1, = (€1a)s_1, 8::(¥, X,) =
(8:)5-100; X2) — (8i3)s1 (¥, 0) + (F(f);)(») where y = (x,, - - -, %,_,), and note
F(f) = 8ly and ||g — &,-..» < Cre7?*t. From L > L at the origin and with
respect to f and g we conclude the same for f; and £. Thus by Theorem 1.1 we
can find in a neighborhood of p an analytic map & with iy = f; and F(@1) = &.
Further since N > { n(n + 3), one can take & to be nondegenerate. Thus 4,



306 H. JACOBOWITZ

or rather its complexification, is analytic and nondegenerate in some B(r,) in C™.
Since we have arranged that H is also analytic, we can apply Theorem 4.1.
Thus # determines a constant C such that if for some r < r, and some g > 9
we have |[f — #|y|l, < Cr*and ||g — F(i2}|,_, < Cr%, then there exists some & €
C?=*(B(3r)) with F(i) = g and iil;; = f. So we need [|f — f,|l, < Cr’ and ||g —
8ll,.1 < Cr. Forp=gqands> q+ 8 we have [|f — f||, < Cr*c and ||g —
&ll,_1 < Cr**:. So for r sufficiently small and g > 9 the conditions of Theorem
4.1 are satisfied. Thus there exists & ¢ C?~° with di|; = f and F(@) = g. We
need f and g smooth enough to take g + 8 derivatives, therefore in Theorem
5.2 we need k& > 17. As we have said, the proof of Theorem 5.1 is similar.

We can also use our knowledge of the linearized initial value problem to
obtain results on isometric deformations. Let U be an n-dimensional submani-
fold of E¥, and H an (n — 1)-dimensoinal submanifold of U. Does there exist
an isometric deformation of U, which leaves H unchanged as a submanifold of
EV?If N < $n(n 4+ 1), then in general the answer is no. However for N >
L n(n + 3) and everything analytic, an affirmative answer was given in [8].
We want to now sketch a proof for the C~ case.

By an isometric deformation of u: U — E¥ we mean a family of embeddings
u,: U — E¥ depending smoothly on ¢ with u, = u and F(u,) = F(u) for all 1.
In addition we want to require that u, equals u on H.

Theorem. Let U be a C* submanifold of E¥,N > + n(n + 3) + 1, which
is nondegenerate at some point p, and H be an arbitrary C* submanrifold of U
also containing p. Then there exists a C~ isometric deformation of some nigh-
borhood U of p, and this deformation leaves U 1 H pointwise fixed.

Proof. Since N > }in(n + 3), we can find some C> vector v which is
orthogonal to @(U) at each point of U. Thus dF(x)v = 0, and v is an infinit-
esimal deformation. Take v = O on H but ¥ not identically zero near p. Now
find two sequences u* % u and v* = v with the property that dF(u)v* = 0.
Next find g = g = F(u) such that F(i* + t0*)|y = g*|y whileat 1 =0, g =
F(w) and dg*/dt = 0. Assume we have defined 0 = w°, w', w?, ... w~' Con-
sider the iteration

P— w1
w, = !,

W, = W, — dF ' + 10 + w,_ ){Fw + * + w,_)) — g} .

If w, converges to some w,., then F(u’ + w* + w,) = g*. Define w* by
w* = w,. If also w* converges to some w, then F(u + ®w + w) = g, and so
we have an isometric deformation. This double iteration is one procedure for
obtaining C* results; see [6] and the comments at the end of §4. It can be
shown that for small values of 7 the limit function w does indeed exist. So it
only remains to verify that «(f}) = u + tv + w leaves H fixed and agrees with
u at t=0. Also we must show that u(z) is not a trivial deformation ; for perhaps
u(?) represents only a rotation of E¥,
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Assume that for some v the map w,_, defined by our iteration is zero at
t = 0. Then the same is true for w, since F(¢*) = g*. This shows u(0) = u.
Similarly if w,_, = O on H, then we have the same for w, since F(v* + w* +
Wr_)) — & = 0 as a metric restricted to H. Thus u(?) is an isometric deform-
ation leaving each point of H fixed. We now only must verify that u(?) is not
trivial. The only way u(z) can be trivial is if at ¢ = O one has du/dt = Aufor
a constant anti-symmetric matrix A. But at t = 0, dw,,/dt = O (for the itera-
tion starting at any v). This is proved by differentiating the equation which
defines w, and using F(#*) = g* and dF(@*)v* = 0. One also needs the fact that
dF~!has a Frechet derivative. So dw*/dt = 0 and du/dt = v at t = 0. Could
v be of the form v = Au? Perhaps, but then just do the same iteration with
v replaced by @v for an arbitrary nonconstant function &.
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